Jump to content
CaddyInfo Cadillac Forum

Engine noise - 01 STS


Babydon

Recommended Posts

Sounds like a knocking.

Coming from the lower part of the engine I think, not on top for sure.

I'm clueless but it sounds like a piston hitting something on the way up or down.

Something loose perhaps?

Sorry I don't have more info...

:)

335a099287.jpg
Link to comment
Share on other sites


Mine has a very similar noise. It seems to be loudest at idle. Sounds like a tick-tick-tick-tick or tap-tap-tap-tap. It's very light in nature, but noticeable. Sounds like a lifter. I swear I've read somewhere about a TSB that said this is a wrist pin noise and is NOT a reason to open the engine, that it's "Normal", but I've never been able to locate that piece of information since I read it, so take that for what it's worth.

What is the frequency of yours? Mine's about 4 taps/second at curb idle, or 240 taps/minute. Which is about 1/3 the idle speed, give or take. Doesn't make sense really.

The ticking/tapping with mine is somewhat random...sometimes it does it, sometimes it doesn't. It seems to be louder when the engine is very hot (like fully warmed up, and idling on a hot day), and when oil viscosity would be at its thinnest. The noise seemed to be less when I was running Shell Rotella T 10W-30 (a very thick 10W-30). The noise increased with Pennzoil Platinum 5W-30. Now I'm running German Castrol 0W-30, which is also relatively thick, and the ticking seems to have returned to a quieter level. I've not tried anything higher than a 30W oil, nor have I added anything to the oil to try to combat it.

Jason(2001 STS, White Diamond)

"When you turn your car on...does it return the favor?"

Link to comment
Share on other sites

Yeah, it would have had to have been real low for it to knock because of that. Can you desecribe the noise a little more. Is it like the noise from mine? You certainly can't hear it from inside the car, and it's really most apparent idling in the garage, where the sound echos off the walls. It's certainly not a "loud" noise...but you can hear it. And it's not a fuel injector tick either.

Jason(2001 STS, White Diamond)

"When you turn your car on...does it return the favor?"

Link to comment
Share on other sites

Nope can't hear from inside.

I noticed when i replaced my lights - idle, standing right in front of the engine.

And yes, Jason, it's seems very similar to yours, but I think the frequency is about half that.

I only suggested engine oil because my DIC works now - interesting story, which I'll share later, but my engine oil is at 26%.

335a099287.jpg
Link to comment
Share on other sites

I only suggested engine oil because my DIC works now - interesting story, which I'll share later, but my engine oil is at 26%.

The 26% is OIL LIFE REMAINING... not OIL LEVEL in the engine.

Posted Image
Link to comment
Share on other sites

I only suggested engine oil because my DIC works now - interesting story, which I'll share later, but my engine oil is at 26%.

The 26% is OIL LIFE REMAINING... not OIL LEVEL in the engine.

:rolleyes: I'm such a noob... Sorry Jim, checked oil myself today - it wasn't too low, but I added a litre anyway, Castrol FullSynth 5W-30.

So if my engine oil life is 26% what does that mean?

It wasn't too long ago when I had an oil change. (1 month)

335a099287.jpg
Link to comment
Share on other sites

I do not believe it would drop from 100% to 26% in one month.

Normally, when you change the oil, you reset the OIL LIFE back to 100%. Then as you drive, your driving habits are taken into account and the DIC displays the remaining oil life... until it reaches 0%.

By the DIC not working for so long... there is a good possibility that the 26% reading has no relation to the ACTUAL oil life remaining on your oil.

If it was working, when you changed the oil last... was it RESET to 100%?

If it was NOT working... then it probably is reading the percentage of a PREVIOUS oil change. Which, of course, has nothing to do with the oil that is in it NOW. :D

About all you can do, is change it again, at the proper mileage mileage interval, of course, and AT THAT TIME, reset the counter to 100%. THEN it will be accurate.

Posted Image
Link to comment
Share on other sites

I do not believe it would drop from 100% to 26% in one month.

Normally, when you change the oil, you reset the OIL LIFE back to 100%. Then as you drive, your driving habits are taken into account and the DIC displays the remaining oil life... until it reaches 0%.

By the DIC not working for so long... there is a good possibility that the 26% reading has no relation to the ACTUAL oil life remaining on your oil.

If it was working, when you changed the oil last... was it RESET to 100%?

If it was NOT working... then it probably is reading the percentage of a PREVIOUS oil change. Which, of course, has nothing to do with the oil that is in it NOW. :D

About all you can do, is change it again, at the proper mileage mileage interval, of course, and AT THAT TIME, reset the counter to 100%. THEN it will be accurate.

I SEE! lol...

It wasn't working at that time - actually that's when the garage suggested a cluster change! (no repair? pshh)

I might also add that the same garage quoted me $1500 for rotor/brake replacement. THIEVES!!!

Thanks Jim!

:D

335a099287.jpg
Link to comment
Share on other sites

Was you DIC totally dark? We don't hear that often. I would reset all of the plugs, fuses, etc. Its possible you have green corrosion at a fuse/maxi fuse.

The oil life monitor monitors a bunch of ambient and operational conditions and based on those input and utilizing an algorithm it reduces the oil life.

Here is info on the oil life monitor (OLM) from the Guru

***************************************************************************

One thing I can touch on and clear up.....the GM oil life monitor operation and my statement that ZDP (or ZDDP as you tend to call it here...most of the API literature just sticks to ZDP so I tend to use that) depletion is the basis for oil deterioration.

My spelling is poor but ZDP stands for zinc dialkyldithiophosphate which , as it sounds, is an anti-wear compound comprised of zinc and phosphorus.

ZDP is dispersed in the oil so as to be at a potential wear site if a surface asperity happens to break thru the oil film thickness causing the dreaded metal-to-metal contact. A molecule of ZDP must be present at that moment to prevent microwelding at the contact site which will cause material transfer, scuffing, scoring, wear and catostrophic failure. The concentration of ZDP in the oil will determine if there is ZDP present to work it's magic. The greater the concentration...the more likely a molecule of ZDP will be there...and vice versa.

By nature, ZDP is sacrifical. As ZDP is "used up" at a wear site to prevent micorwelding the concentration of ZDP decreases.... So...if you measure the ZDP concentration in engine oil in a running engine it will decrease at linear rate based on engine revolutions. Any given engine has a certain number of high potential wear areas where metal-to-metal contact could occur due to reduced film thickness and/or surface asperities....areas such as rubbing element cam followers, distributor gears, rocker arm pivots, push rod tips, etc...... The more of these areas the more ZDP depletion. The more often these features come in contact the greater the ZDP depletion. That is why, generally speaking, ZDP concentration in the oil, for any given engine, will decrease at a fairly linear rate when plotted versus cummulative engine revolutions. The more times it turns the more contact the more chance for wear the greater the depletion. This is as much of a fact as I could quote ever and is really not speculation or anything. It is proven beyond a shadow of a doubt in many studies. That is why it is ONE of the basis for determining oil life remaining and why it is THE basic premis of the GM oil life algorithm. It is only ONE of the things that determines oil life...but it is the one thing that can be tied to engine operation in a linear fashion and estimated very accurately by accumulating engine revolutions via a counter.

The GM engine oil life monitor counts engine revolutions and accumulates the number for the basis of the oil life calculation. It then adds deterioration factors for operating temperature, start up temperature, soak times, ambient, coolant temperature, etc... There are a LOT of factors that "adjust" or affect the slope of the deterioration but the fundamental deterioration is traced back to the ZDP depletion that is inescapable with engine revolutions. The specific rate of ZDP depletion is readily measurable for any given engine so that is the fundamental item that is first calibrated for the oil life algorithm to tailor it specifically to that engine.

You would obviously like to get the oil out of the engine before the ZDP concentration gets so low that it is ineffective at being at the right place at the right time and preventing engine wear so that becomes the long term limit on oil life for that application.

The other things that determine oil life such a acid build up, oxidation, petane insuluables such as silicon from dust/dirt, carbon or soot build up from the EGR in blowby, water contamination, fuel contamination, etc.... are all modeled by the multipliers or deterioration factors that "adjust" the immediate slope of the line defined by the engine revolution counter as those items can be modeled in other ways and accounted for in the immediate slope of the ZDP depletion line.

The algorithm was developed over the course of many years by several lubrication experts at GM Fuels and Lubes, spearheaded by Doctor Shirley Schwartz who holds the patents (with GM) for the algorithm and the oil life montitor. I had the luck of working directly with Dr. Schwartz when the idea of the oil life monitor first progressed from the theoretical/lab stage to real world testing/development/validation. There were fleets of cars operated under all conditions that deteriorate the oil life for any and every reason and , thru oil sampling and detailed analysis of the oil condition, the algorithm was developed, fine tuned and validated to be the most accurate way invented yet to recommend an oil change interval by. As just one example, I have seen cars driven side-by-side on trips, one towing a trailer and one not, for instance, to prove the effectiveness of the oil life monitor in deteriorating the oil at a faster rate just because of the higher load, higher average RPM, higher temps, etc...and it works flawlessly.

The oil life monitor is so effective because: it is customized for that specific vehicle/engine, it takes everything into account that deteriorates the oil, it is ALWAYS working so as to take into account THAT INDIVIDUALS driving schedule, and it tailors the oil change to that schedule and predicts, on an ongoing basis, the oil life remaining so that that specific individual can plan an oil change accordingly. No other system can do this that effectively.

One thing is that I know personally from years of testing and thousands of oil analysis that the oil life algorithm works. There is simply no argument to the contrary. If you don't believe me, fine, but, trust me, it works. It is accurate because it has been calibrated for each specific engine it is installed on and there is considerable testing and validation of the oil life monitor on that specific application. NOt something that oil companies or Amsoil do. They generalize....the oil life monitor is very specific for that application.

Oil condition sensors in some BMW and Mercedes products are useful, also. They have their limitations, though, as they can be blind to some contaminates and can, themselves, be contaminated by certain markers or constituents of certain engine oils. Oil condition sensors can only react to the specific oil at that moment and they add complexity, cost and another potential item to fail. One other beauty of the GM oil life monitor is that it is all software and does not add any mechanical complexity, mass, wiring or potential failure mechanism.

There is considerable safety factor in the GM oil life monitor. Typically, I would say, there is a 2:1 safety factor in the slope of the ZDP depletion curve....in other words, zero percent oil life per the ZDP depletion is not zero ZDP but twice the concentration of ZDP considered critical for THAT engine to operate under all conditions reliably with no wear. This is always a subject of discussion as to just how low do you want the ZDP to get before the oil is "worn out" if this is the deciding factor for oil life. We would tend to be on the conservative side. If the oil life is counting down on a slope that would recommend a 10K change interval then there is probably 20K oil life before the ZDP is catostrophically depleted....not that you would want to go there...but reason why many people are successful in running those change intervals.

Please...NOT ALL ENGINES ARE THE SAME. The example above is an excellent practical justification of why you would want to add EOS and change the 15W40 Delvac in the muscle car at 3000 miles max and yet can run the Northstar to 12500 easily on conventional oil. You must treat each engine and situation differently and what applies to one does not retroactively apply to others. This is where Amsoil falls short in my book by proposing long change intervals in most everything if you use their oil. It just doesn't work that way. You can run the Amsoil to 12500 with no concerns whatsoever in the late model Northstar because even the oil life monitor tells you that for conventional oil off the shelf. Would I do that to the 502 in my 66 Chevelle...NO WAY. Amsoil says I can though. Wrong.

There are entire SAE papers written on the GM oil life monitor and one could write a book on it so it is hard to touch on all aspects of it in a single post. Hopefully we hit the high spots. Realize that a GREAT deal of time, work and energy went into developing the oil life monitor and it has received acclaim from engineering organizations, petroleum organizations, environmental groups all across the board. It is not some widget invented in a week and tacked onto the car.

Pre-1995 - DTC codes OBD1  >>

1996 and newer - DTC codes OBD2 >> https://www.obd-codes.com/trouble_codes/gm/obd_codes.htm

How to check for codes Caddyinfo How To Technical Archive >> http://www.caddyinfo.com/wordpress/cadillac-how-to-faq/

Cadillac History & Specifications Year by Year  http://www.motorera.com/cadillac/index.htm

Link to comment
Share on other sites

Archived

This topic is now archived and is closed to further replies.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...